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Abstract
The Monte Carlo code PENELOPE has been used to simulate electron beams
from a Siemens Mevatron KDS linac with nominal energies of 6, 12 and
18 MeV. Owing to its accuracy, which stems from that of the underlying
physical interaction models, PENELOPE is suitable for simulating problems of
interest to the medical physics community. It includes a geometry package that
allows the definition of complex quadric geometries, such as those of irradiation
instruments, in a straightforward manner. Dose distributions in water simulated
with PENELOPE agree well with experimental measurements using a silicon
detector and a monitoring ionization chamber. Insertion of a lead slab in the
incident beam at the surface of the water phantom produces sharp variations
in the dose distributions, which are correctly reproduced by the simulation
code. Results from PENELOPE are also compared with those of equivalent
simulations with the EGS4-based user codes BEAM and DOSXYZ. Angular
and energy distributions of electrons and photons in the phase-space plane (at
the downstream end of the applicator) obtained from both simulation codes
are similar, although significant differences do appear in some cases. These
differences, however, are shown to have a negligible effect on the calculated
dose distributions. Various practical aspects of the simulations, such as the
calculation of statistical uncertainties and the effect of the ‘latent’ variance in
the phase-space file, are discussed in detail.
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1. Introduction

High-accuracy calculations of dose distributions inside tumours and the surrounding tissue
are essential for assessing the effectiveness of a given treatment in terms of the probability
of tumour control and of radiation-induced complications. Thus, the AAPM (1983) protocol
indicates that relative errors as small as 5% can be decisive in evaluating whether a treatment
is suitable.

Although Monte Carlo (MC) simulation is, at present, the most accurate method for de-
scribing the coupled transport of electrons and photons in complex geometries, residual inaccu-
racies may nevertheless exist. These can be caused by either statistical uncertainties, which are
inherent in the method, or by the approximations used in the modelling of cross sections, in the
space displacement algorithms employed for charged particles6, in the geometrical description
of the material system, etc. Whereas statistical effects can be reduced to any predetermined
level by simply simulating more particles, the use of approximate models for the physical
processes is unavoidable and their effect on the final results is not always easily predictable.

An MC algorithm can be trusted only after these limitations have been proved to be
irrelevant, ideally through extensive benchmarking with experimental results. However,
comparison with experiments may be inconclusive in many cases for a number of reasons,
for example because geometrical details of complex systems are not always unambiguously
defined or because experimental results are sometimes affected by correction factors (such
as those applied to ionization chamber readings in radiotherapy clinical practice) which are
unknown or determined with the aid of an MC simulation. Experimental errors can also
be the origin of discrepancies. An alternative and desirable validation practice would be to
compare results from various independent MC codes, which employ different models and
approximations. This should, at least, indicate how sensitive simulation results are to the
differing features of the codes used. In spite of this, most developments in the area of medical
applications, and more specifically on therapy machine heads, which present a considerable
degree of geometrical complexity, rely almost exclusively on two well-known code systems,
EGS4 (Nelson et al 1985) and ETRAN-ITS (Halbleib et al 1992). Other simulation packages,
such as MCNP (Briesmeister 1997) are also employed by some authors (see for example Lewis
et al (1999) or Schach von Wittenau et al (1999)). However, the comparison of results obtained
with different algorithms is very rarely made—as an example, see Siebers et al (1999) for a
comparison of photon beams with EGS4 and MCNP4b.

The history and achievements of the MC simulation of accelerator heads have been
discussed in several reviews (Andreo 1991, Ma and Jiang 1999). Initially, most studies were
devoted to photon beams (e.g. Petti et al 1983, Mohan et al 1985, Mohan 1988). In the
late 1980s, the simulation of electron beams started to attract the interest of researchers (see
for example Udale (1988), Udale-Smith (1992), Ding et al (1996), Ma et al (1997)). Many
of these studies were performed with BEAM, developed by Rogers et al (1995) within the
framework of the OMEGA project (Rogers et al 1990). BEAM, which is based on the EGS4
system, allows the user to simulate high-energy electron and photon beams by modelling the
different hardware elements with a variety of geometrical entities, such as slabs, stacked cones,
flattening filters, etc.

In the present paper we describe the MC simulation of electron beams from a Siemens
Mevatron KDS linac operating at the Hospital Clı́nic de Barcelona. Two codes were employed:
PENELOPE (Salvat et al 1996), a general-purpose package developed by some of the authors
of this work, and BEAM. The aim is to enlarge the spectrum of codes available to the

6 In general, we shall use the term ‘particle’ to refer either to photons, electrons or positrons.
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medical physics community by showing, with the aid of a practical example, the suitability
of PENELOPE for dealing with complex radiation transport problems involving electrons and
photons. We would like to stress that the present paper is primarily concerned with the accuracy
of the calculation, since our aim is to determine the degree of agreement that can be expected
between different MC algorithms and between these and the experimental data. Speed, in our
approach, is a secondary issue.

The rest of the paper is organized as follows. In section 2, the main characteristics of
the PENELOPE code system are described. The modelling of the accelerator geometry is
presented in section 3. Section 4 is devoted to important features of the simulation of these
type of systems, such as calculation of uncertainties, parallelization, variance reduction, etc.
Simulation results from PENELOPE are compared with both measurements and EGS4 results
in section 5, and some conclusions are drawn in section 6. In the appendices, we present a
detailed discussion on practical features of the calculation of statistical uncertainties and on
their propagation from the phase-space file.

2. The PENELOPE code system

PENELOPE (an acronym for PENetration and Energy LOss of Positrons and Electrons in
matter—photons were introduced later) is a general-purpose MC code system for the simulation
of coupled electron–photon transport in arbitrary materials and complex geometries that has
been developed at the Universitat de Barcelona over the last 10 years (Baró et al 1995, Salvat
et al 1996, Sempau et al 1997). It is applicable to energies ranging from 1 keV up to 1 GeV,
approximately. The core of the system is a FORTRAN 77 subroutine package that generates
and follows particle trajectories inside material systems consisting of a number of homogeneous
regions, called bodies. These subroutines are invoked from a simple steering main program,
to be provided by the user, which controls the evolution of the tracks and keeps score of
the quantities of interest, such as energy deposition, particle current, etc. A particle track is
considered as a sequence of free flights or ‘jumps’. At the end of each jump, the particle
suffers an interaction with the medium, a ‘knock’, where it loses energy, changes its direction
of flight and, in certain cases, produces secondary particles. The actions to be taken in the main
program are the same for all kinds of particles, thus simplifying its structure. The complete
package (including FORTRAN source files, database, geometry viewer and debugger and
documentation) is available from the NEA Data Bank7 and through the Radiation Shielding
Information Center (Oak Ridge).

MC codes often use condensed schemes (or class I, according to Berger’s (1963)
terminology) to simulate high-energy electron and positron transport. Thus, the particle track
is divided into a large number of segments (steps) long enough to ensure that many interactions
occur along each step. The energy loss and the global angular deflection of the particle due to the
interactions in each step are sampled from suitable multiple-scattering theories (Goudsmit and
Saunderson 1940, Lewis 1950, Molière 1948). The procedure is not completely satisfactory
due to the fact that the distribution of space displacements is partially unknown. Moreover,
when particles approach an interface, the step length must be progressively reduced to ensure
that the complete segment is contained within the initial medium, which conflicts with the use
of preselected step lengths and thus complicates the logic of the code.

PENELOPE has recourse to a systematic use of mixed simulation (class II schemes in
Berger’s terminology) for electrons and positrons. A mixed simulation algorithm requires the

7 OECD Nuclear Energy Agency Data Bank. Le Seine Saint-Germain, 12 Boulevard des Iles, 92130 Issy-les-
Moulineaux, France. E-mail: NEA@db.nea.fr; http://www.nea.fr
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specification of cut-off values for the energy loss and the polar scattering angle. Individual
interactions with energy losses or angular deflections larger than these cut-offs are termed
hard (or catastrophic) and simulated in a detailed way. The global effect of the remaining
interactions, called soft, that occur between each pair of successive hard interactions is
simulated as a single ‘artificial’ event, where the particle loses energy and changes its direction
of movement according to the corresponding multiple scattering theories. Space displacements
are simulated by using a simple mechanism, the so-called ‘random hinge’8, that, owing to the
relatively gentle effect of soft events, is particularly accurate and applicable even in the vicinity
of interfaces so that no step-size adaptive algorithm is needed. Thus, as opposed to EGS4 when
the PRESTA (Bielajew and Rogers 1987) module is active (as is the case for all the EGS4
simulations reported in this paper), PENELOPE does not require knowledge of the minimum
perpendicular distance between the charged particle and the boundaries of the material region
where this particle moves. Since the calculation of this minimum distance implies, in the
general case of an arbitrary quadric surface, solving the roots of a sixth-order polynomial
equation (see Bielajew (1995) for a detailed discussion on the subject), the application of
PRESTA is, in practice, limited to a subset of quadrics for which the minimum distance can be
obtained with a modest computational effort (i.e. planes, cylinders along the z-axis, spheres,
etc). Fortunately, many real-life problems can be described with this subset of quadrics, as
happens in the case of an accelerator head. Hence, the combined use of class II schemes for
electrons and positrons and the random hinge mechanism not only improves the accuracy of
the simulation but also simplifies the operation of the code.

We would like to point out that the multiple-scattering formalism adopted in PENELOPE
does have a limitation. This limitation is related to the requirement that scattering in the
medium has to be multiple, that is, at least about 20 artificial interactions have to take place.
To guarantee the fulfillment of this condition the parameter HFPMAX, which sets an upper bound
for the allowed values of the mean free path between hard interactions, can be defined by the
user for each material. In our simulations we set HFPMAX equal to �1/20 of the characteristic
width of each homogeneous region. This is particularly important in the case of an electron
accelerator head due to the presence of one or more very thin vacuum window and scattering
foils in the beam path (see the description of the geometry below).

Two different energy loss cut-offs for charged particles, WCC and WCR, are defined for the
collisional and radiative (bremsstrahlung) losses respectively. The angular cut-off, in turn, is
indirectly defined through the mean free path λ

(h)

el that results for hard elastic collisions. The
parameter C1, set by the user, determines λ

(h)

el by means of the relation

C1 ≡ λ
(h)

el

λ1
� 1 − 〈cos θ〉(h) (1)

where λ1 is the so-called first transport mean free path. The last term in equation (1) evidences
the approximate relation between C1 and the mean angular deflection 〈cos θ〉(h) suffered by the
electron along a hard mean free path. In PENELOPE, C1 can take values from 0 to 0.2. When
set to zero, the simulation of angular deflections is detailed, i.e. no multiple scattering approach
is used. The higher its value, the larger the cut-off and, hence, the steps taken, thus speeding
up the simulation at the cost of reducing somewhat the accuracy of the simulated transport
process. An additional restriction on the angular cut-off is imposed through the parameter C2,
defined as the maximum fractional kinetic energy that can be lost in a single step. Its value can
be set from 0 (detailed simulation) up to 0.1. The user also defines three absorption energies,
EABS(1,2,3) for electrons, photons and positrons respectively; when a particle reaches the

8 The term was coined by Dr R P Kensek of Sandia National Laboratories.
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corresponding absorption energy, its simulation is discontinued and its energy is assumed to
be locally deposited.

In spite of the fact that PENELOPE and EGS4 use quite different physical models, both
codes have recourse to mixed simulation to account for energy losses of electrons and positrons.
As a result, some of the PENELOPE user-defined parameters find their counterpart in EGS4.
Thus, WCC and WCR are equivalent to AE and AP respectively, except that in EGS4 the rest mass
is included in all definitions affecting electrons or positrons. Furthermore, C2 is analogous to
ESTEPE, when the latter is active. The set of parameters EABS are equivalent to ECUT and PCUT.
In contrast, there is no analogy for C1, since EGS4 does not employ mixed simulation for the
angular deflections. This observation is, perhaps, the most relevant feature that distinguishes
PENELOPE from EGS4.

Photon transport is performed by using the conventional detailed scheme, i.e. all the
interactions are simulated in chronological succession. PENELOPE also considers the
emission of characteristic x-rays and Auger electrons that result from vacancies produced
in K shells by photon interactions. Radiation resulting from the filling of vacancies in outer
shells is not followed; in these cases, the excitation energy is taken out by the emitted Compton
electron or photoelectron. This limits the validity of the simulation to photons with energies
larger than the L-shell ionization energy of the heaviest element in the medium, that is, about
15 keV for the accelerator head under study. The probability of inner-shell ionization by
electron impact is very small. When it occurs, it is assumed that the excitation energy of the
residual ion is locally deposited.

The code system also includes a subroutine package, called PENGEOM2, for automatic
tracking of the particles in quadric geometries, i.e. material systems consisting of bodies limited
by quadric surfaces. Bodies can be grouped into modules that, in turn, can form part of larger
modules. This hierarchic modular structure allows a large simplification of the geometry
calculations. Moreover, individual modules can be independently translated and rotated with
all their submodules. This makes the configuration of a given accelerator easy to modify (e.g. to
open or close the jaws). The auxiliary program GVIEW, which operates under DOS, displays
2D cuts of the geometry on the computer screen and is useful for debugging the geometry
definition file.

The geometry definition logic adopted in PENGEOM2 is similar to the ‘Constructive
Quadric Geometry’ used in the POV-Ray9 ray-tracing software. Recently, a FORTRAN
translator of the PENGEOM2 definition files to POV-Ray format has been developed to generate
true 3D pictures of the geometry on a variety of platforms. It will be made available in the
future.

3. The geometry of the Siemens Mevatron KDS accelerator

The Siemens Mevatron KDS linac is a standing-wave linear accelerator with a 270◦ deflection
chamber that provides electron beams with nominal energies of 6, 8, 10, 12, 15 and 18 MeV.
The elements of the head assembly have been modelled, both in PENELOPE and BEAM,
following the specifications provided by the manufacturer. A Cartesian reference frame is
defined such that the z-axis coincides with the symmetry axis of the primary collimator (the
third element in the list below), pointing along the direction of motion of the beam, and with
the origin of coordinates located at the entrance side of the vacuum window (first element in
the list). The elements considered are:

9 Persistence of Vision Ray Tracer (POV-RayTM) version 3.1. This is a powerful tool for producing high-
quality computer graphics. POV-Ray is copyrighted freeware and can be downloaded from the Internet at
http://www.povray.org
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(a) The vacuum window, at the exit of the deflection chamber, consisting of two tungsten foils
with an inner water flux for cooling.

(b) A primary scattering foil of gold or iron. Its thickness and composition depend on the
energy setting.

(c) A cylindrical tungsten primary collimator with a conical aperture.
(d) An aluminium secondary foil. Homogeneity of the electron field is achieved through

the combined effect of scattering and absorption in the primary and secondary foils,
respectively.

(e) A cylindrical monitoring ionization chamber consisting of three mylar foils, separating
two volumes of air. For simplicity, this element has been modelled as a single layer of
mylar of equivalent thickness. Following the manufacturer’s indications, the conductor
of the chamber is ignored.

(f) The mirror of the Siemens KDS is automatically removed when the accelerator is operated
in the electron beam mode. Therefore this element has not been included in the simulation.

(g) Two pairs of tungsten jaws that limit the radiation field in the x and y directions. For
electron beams, as opposed to photon beams, their aperture, set so as to produce a
25 × 25 cm2 field at 100 cm from the source (SSD = 100 cm), is fixed irrespective
of the beam energy or the actual field size at the patient surface, which is determined by
the applicator—see below.

(h) A shielding cover and an accessory holder, both modelled as iron plates with a square
opening to let the beam pass through. The arms of the accessory holder, which are near
the beam border, have been modelled as four slanted iron cylinders. Since BEAM does not
allow the modelling of these latter structures they were the only element not considered in
the EGS4 simulations, an approximation that is well justified due to their relatively small
contribution to the quantities of interest studied here.

(i) A variable electron applicator consisting of two pairs of small lead jaws that collimate
the field in the x and y directions. Its aperture can be varied to produce rectangular fields
at the patient surface with sides ranging from 6 to 20 cm. In the present study, only a
10 × 10 cm2 field size has been considered. In order to reduce the number of geometrical
calculations, only those parts of the applicator that are close to the beam axis have been
included. These are modelled as a square lead frame and four cylindrical aluminium bars
connecting the frame with the small jaws. The total distance from the vacuum window to
the last small jaw of the applicator is 95 cm.

The whole system is immersed in dry air. In addition to the elements described above,
vertical walls have also been defined in order to limit the lateral dimensions of the simulation
‘universe’. This limitation fulfils two aims: firstly, it facilitates the visualization of the
geometry with rendering tools such as POV-Ray; secondly, since tracks that reach the outer
vacuum are no longer simulated, time is saved by discarding those particles that are too far
from the beam axis to reach the phantom surface. Figure 1 shows a 3D rendering, generated
with POV-Ray, of the geometry of the accelerator head.

4. The simulation

The process of calculating dose distributions within a patient is usually split into at least
two steps. First, the particles are transported through the treatment head and beam modifiers
down to a predefined scoring plane, just before the patient surface, and their final state is
stored in a phase-space file, PSF for short. Alternatively, some authors determine only the
energy and/or angular distributions of the radiation field at the phantom surface, although this
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Figure 1. Siemens Mevatron KDS accelerator head as modelled for this study. In the BEAM
simulations the four slanted cylinders in the accessory holder were not considered. This 3D view
was generated by POV-Ray—see text for details.

procedure disregards correlations that, in principle, could be relevant for an accurate description
of dose distributions in the patient. The PSF contains the type of particle, its position,
direction of motion, energy and statistical weight (only necessary if variance-reduction—
VR hereafter—techniques are employed) for each particle that reaches the scoring plane. To
evaluate statistical uncertainties properly, it is also necessary to store information about the
primary ancestor of the particle, as will be discussed below. Some authors consider a further
division of this first step into two substeps so as to separate the simulation of the patient-
independent portion of the head geometry from that of the beam modifiers (if any) which,
in principle, can depend on the particular treatment being considered and, therefore, on the
patient.

In our simulations, electrons coming out of the deflection chamber and entering the vacuum
window are modelled as a point-like, monoenergetic and monodirectional source. Although
some more refined source models, which take into account spatial, angular and energy spreads,
can be included in PENELOPE in a straightforward way, our simulation results showed little
sensitivity to these details of the initial beam in comparison to other features such as the
geometry of the treatment head and the accuracy of the description of the transport process.
The trajectory of each particle, either primary or secondary, is followed until its energy drops
below the absorption energy, EABS, or until it leaves the system. The scoring plane is defined
perpendicular to the z-axis and located 5 cm below the last small applicator jaw, so as to make
the source-to-surface distance (or SSD) equal to 100 cm.

In a second stage, the particles contained in the PSF are transported through the irradiated
object, which in our case is a water phantom. In the PENELOPE simulations it has
been modelled as a semi-infinite homogeneous body divided into spatial bins where energy
depositions are scored. The EGS4-based user code DOSXYZ (Ma et al 1995), which considers
the phantom divided in a large number of small volume elements, or voxels, has also been
employed and its results compared to those obtained with PENELOPE.

Nominal energies of 6, 12 and 18 MeV are considered in this work. Since the average
kinetic energy of primary electrons just before entering the vacuum window does not
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necessarily coincide with the nominal energy specified by the manufacturer, some preliminary
inspection is required to determine the value to be used in the simulation. The procedure
that we adopted was to progressively modify the energy until the experimental and simulated
values of the depth R50 at which the central axis depth-dose reaches 50% of its maximum
agreed reasonably well. Thus, the initial energies were set to 6.80, 12.75 and 18.87 MeV
respectively for the three nominal energies mentioned above. The same initial energies were
used for both PENELOPE and BEAM. An alternative approach could have been to determine
the initial energies for the two codes by matching the results from each code with those from
the experiments. We have deliberately avoided this method in order not to introduce possible
sources of discrepancy between the two sets of simulation results. As a consequence, only
comparisons between PENELOPE and experiments, on the one hand, and between PENELOPE
and EGS4, on the other, are really meaningful and hence comparisons between EGS4 and
experiments will not be considered.

Because of continued development, accelerator units of the same series may differ in
geometrical details, which can be difficult to elucidate from the commercial specifications.
In this respect, special care must be taken to make sure that all the relevant elements have
been correctly modelled. In our case, some preliminary calculations put into evidence that
an important element was missing in the description of the accelerator. It turned out that the
vacuum window in our unit incorporates a cooling system with two tungsten foils (see the
geometry description above) which was not included in the first simulations.

With regards to user-defined parameters, all PENELOPE simulations were carried out
with absorption energies EABS equal to 100 keV and 10 keV for electrons (or positrons) and
photons respectively. Mixed simulation cutoffs WCC and WCR were set to 5 keV and 1 keV
respectively. Angular deflection cut-offs are determined by the values of the parameters C1
and C2, which were chosen to be 0.05. EGS4 simulations, in turn, were performed with ECUT,
PCUT, AE and AP set to a kinetic energy of 10 keV. It is interesting to point out that EGS4
makes use of the continuous slowing down approximation (CSDA) to describe energy losses
below AE and AP. As is well-known, CSDA does not account for energy loss straggling and,
in consequence, EGS4 has to be forced to simulate most inelastic interactions in a detailed
way to obtain accurate electron energy distributions (i.e. AE and AP have to be set to a value
smaller than the width of the energy distribution). This slows down the simulation slightly.
On the contrary, PENELOPE implements a model for energy losses below WCC and WCR that
preserves the first two moments of the energy loss distributions, namely the average energy
loss (which would be equivalent to CSDA) and the energy straggling. Hence, higher cut-
offs could, in principle, be selected, although we preferred not to take advantage of this
feature—actually the PENELOPE cut-offs were set to values even lower than those selected
for the EGS4 simulations—so as to minimize the effect of condensed simulation over the MC
results.

4.1. The phase-space file

The variables stored in the PSFs generated by PENELOPE are the particle type, its position
(X and Y coordinates), direction cosines corresponding to the x and y directions (U and V,
respectively), energy, statistical weight—which is irrelevant if the simulation is analogue (i.e.
when no VR is applied)—and an integer label (HIST), whose use will be explained in full
detail later. To avoid filling up the PSF with superfluous information, for the 10 ×10 cm2 field
studied here, only those particles that reach the scoring plane with lateral coordinates |x| and
|y| smaller than 10 cm are stored. This defines the ‘universe’ of the PSF as a 20 × 20 cm2

square centred on the z-axis.
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Since z = 100 cm for particles in the PSF, there is no need to store this coordinate.
Furthermore, the direction cosine corresponding to the z-axis, W, can be obtained as

W = +
√

1 − U2 − V2. (2)

If particles carry unit weight, all the required information for a single particle (in REAL*4
precision) can be stored in 24 bytes or, in other words, every million particles occupy less
than 22.9 MB of disk space. An adequate binary representation of the pertinent state variables
permits the storing of a PSF containing 108 particles in 2.24 GB of disk space. The use
of compression techniques would somewhat reduce the required volume even further. Since
this PSF would be large enough for virtually all present-day practical purposes, one might
think that the availability of low-cost, portable mass storage devices might render the use of
semiempirical models of the PSF, and the corresponding approximations introduced by them,
unnecessary. However, these models continue to be useful for a number of reasons, such as
facilitating the tasks involved in the commissioning of the machine, an example of which is
given by Jiang et al (2000).

4.2. Parallelization and variance reduction

Even with the use of fast single-processor computers, the high-accuracy MC simulation of an
accelerator head is a task that may take several days. Simulation efficiencies can be significantly
improved by using conventional VR techniques (e.g. range rejection, splitting and Russian
roulette, etc) or/and by parallelizing the computer program. Nowadays, parallel computers,
essentially formed by many processors sharing a common random access memory, and task
farms consisting of many interconnected stand-alone computers, are becoming widely available
to the medical and academic communities. In both cases, the basic idea is to split a lengthy
calculation into smaller parts which are then run simultaneously by different processors, thus
effectively increasing the speed by a factor which is roughly equal to the number of processors
involved. In order to take advantage of these architectures, the computer code must be modified
so as to define how to split the job to be done into smaller tasks and how to gather the results
obtained by the various processors.

In this work, and for comparison purposes, we have separately employed both VR and
parallelization. On the one hand, several VR techniques are already embedded in BEAM,
among which range rejection is the most relevant for our study. This technique, consisting of
discarding those electrons with energies too low to reach the scoring plane, has the effect of
ignoring any bremsstrahlung photon that would have been produced by the discarded particles.
BEAM minimizes these effects in different ways (Rogers et al 1995) and takes full advantage
of range rejection. This allowed us to run the code on a modest Pentium Pro 200 MHz personal
computer.

On the other hand, bearing in mind the fact that our primary concern was accuracy, not
speed, we opted not to use any VR technique in the PENELOPE user code developed in this
work to obtain the PSFs. To compensate for the much lower simulation efficiency that this
implied, the code was parallelized and run on eight processors of an SGI Origin 2000, a parallel
machine located at the Centre de Supercomputació de Catalunya (CESCA). The parallelization
was carried out with the aid of the message passing interface (MPI) library, version 1.2, which
is freely available and can be used on several platforms. The necessary routines can be invoked
from the main program, which is unique for all processors. Each processor, or group of them,
is then identified by an index and the execution of the code is forked accordingly.

Parallel programming has been employed to reduce computing times in the past (Ma 1992).
One of the features where care must be exercised refers to the generation of random numbers.
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The main concern here is to make sure that the contributions to the quantity of interest from
particles simulated by different processors are uncorrelated. This can be accomplished by using
special random number generators (RNGs) that were developed to produce multiple, ‘high-
quality’ sequences in parallel machines (see, for example, Mascagni et al (1995)). Another
approach, which we have followed in this study, consists of using the same RNG implemented
in the single-processor MC code. PENELOPE, for example, combines two different pseudo-
random sequences according to the scheme proposed by l’Ecuyer (see Salvat et al (1996) for
a detailed description of this implementation), resulting in an RNG of the congruential type
with a period of the order of 1018. It has been claimed that one can safely use this approach
provided that different seeds are introduced in the various processors. The lack of correlation is
reasonably guaranteed by the fact that the simulation of each particle involves a random number
of calls to the RNG, thus making any ‘synchronism’ between different processors very unlikely.
The results obtained in this study seem to corroborate the validity of this assumption.

4.3. Uncertainties

After completing a number N of histories10, the expected value 〈q〉 of a certain quantity of
interest q (e.g. the energy deposited in a certain voxel) is estimated by means of the average
q, namely

q ≡ 1

N

N∑
i=1

qi (3)

where qi is the contribution to q due to the ith history. By virtue of the central limit theorem
(Gnedenko 1975), in the limit N → ∞ the probability distribution of q is Gaussian. In this
limit

s2 ≡ 1

N

(∑
i q

2
i

N
− q2

)
(4)

is an unbiased estimator of the variance of q. Simulation results are commonly expressed in
the form q ± ks. In this work all uncertainties have been obtained using k = 3 so that the
probability that the true value 〈q〉 lies within the error bar is 99.7%.

It is worth stressing the fact that qi refers to the sum of contributions of a primary particle
(say qi1) and all the secondaries originated by it (qij with j = 2, . . .). This can be expressed
by writing qi = ∑

j qij . As a consequence, the average of squares in equation (4) cannot
be obtained by summing over contributions from individual particles, i.e.

∑
i q

2
i 
= ∑

ij q2
ij .

Owing to the fact that the simulation is split into two parts, as explained above, the former
observation has a practical consequence on the structure of the PSF, because the intermediate
information contained in it ought to make the identification of all the secondary particles with
the same primary ancestor possible. To this end, each record output by PENELOPE carries an
integer label, HIST, whose purpose is to tag the current particle with the index of the primary
particle that it originated from.

A few words regarding programming details are in order here. Consider, for instance, the
simulation of the 3D dose distribution in a phantom involving a large number of voxels, of the
order of one million. Each voxel has an associated random variable q. After completion of a
history, a literal application of formula (4) would imply the updating of the counters storing the
energy deposited in each voxel and its square for all voxels. This approach, which represents

10 Hereafter the term ‘history’, when used in this context, must be understood as the process of simulating a primary
particle and all the secondaries produced by it.
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the calculation of millions of additional sums and products each time a history is finished,
would slow down the calculation unacceptably and should therefore be avoided.

To overcome this difficulty, most EGS4 user codes adopt a different approach, which
explains the absence of a label equivalent to HIST in their PSFs. The procedure consists of
splitting the simulation into a number NB (�10) of independent ‘batches’. This scheme is not
completely satisfactory, because the reliability of the estimated variance depends on the batch
size. Indeed, it can be proved that smaller sizes yield more accurate variances, i.e. the variance
of the estimated variance decreases. In fact, the optimum batch size is one history, which would
make this method totally equivalent to the approach represented by equation (4) provided a
label like HIST were added to the BEAM PSFs. Fortunately, the overload produced by the
naive application of equation (4) can be easily avoided so that there is no need to rely on the
concept of batches. A computationally inexpensive algorithm that implements equations (3)
and (4) for voxel-like distributions is presented in detail in appendix A.

Another interesting subtlety originated by the division of the simulation into two parts
is related with the statistical uncertainty with which q can be known for a given PSF, which
represents the output of the first part. In appendix B it is proven that the use of VR techniques
during the second part of the process, that is, for the transport within the phantom of the
particles that form the PSF, cannot reduce the variance of q below a certain limit which shall
be called the latent variance. In the appendix we give a closed expression for this quantity,
as well as a practical method to determine it. It is important to bear in mind that the latent
variance is an intrinsic property of a PSF and of the nature of the quantity of interest q. It
can be used to measure the ‘quality’ of a PSF for a particular calculation q and as a guide to
optimize its size. It is also useful to measure the increase in efficiency achieved by application
of a certain VR technique during the calculation of the PSF in question.

5. Results

Dose measurements were carried out in a phantom consisting of a water-filled tank with a
scanning volume of 49.5 × 49.5 × 49.5 cm3 (RFA 300 Scanditronix) and with the electron
beam impinging normally on the water surface. Two detectors, a Scanditronix p-type silicon
diode detector and an NACP chamber operating at a polarization potential of −300 V connected
to a Farmer dosemeter 2570/1 from Nuclear Enterprise were employed. The effective point
of measurement of the chamber is immediately inside its front window. The detectors were
always moved from the bottom to the surface of the phantom, to avoid backlash and water
surface problems. Data were collected at depth increments of 1 mm and each measurement
was repeated several times. Depth doses were evaluated from depth-ionization data obtained
with the ionization chamber by using stopping power ratios from the IAEA (1987) protocol,
whereas the silicon diode detector was used directly, without any depth-dependent correction.
The ionization chamber was used as the reference instrument and the silicon detector, once
proved to yield results comparable to those obtained with the chamber in a limited depth
interval, was employed instead to take advantage of its simpler operational requirements.

Simulations of 3D dose distributions in water were performed using previously generated
PSFs. Central-axis depth doses were tallied within a cylindrical region of 1.2 cm in diameter,
centred on the z-axis and split into bins 2 mm deep. Lateral profiles were tallied using cubic bins
2 mm wide. As the treatment head presents a nearly perfect fourfold symmetry with respect
to 90◦ rotations around the z-axis, in the PENELOPE simulations it was assumed that the flux
entering the phantom had this symmetry too and, as a result, PENELOPE’s lateral profiles are
symmetric with respect to their origin. By taking advantage of this fact, the standard deviation
of the dose off-axis is reduced by a factor roughly equal to 2 at no additional computational cost.
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Figure 2. Central-axis depth dose in a water phantom relative to the dose maximum for the 6, 12
and 18 MeV beams. The symbols represent experimental measurements (Dexp) and the full curves
correspond to PENELOPE results (Dpen). Superimposed, the differences of relative doses between
PENELOPE and experiments (Dpen − Dexp, dot-dashed curves) and between PENELOPE and
EGS4 (Dpen − Degs, dashed curves) are also plotted. Error bars (at 3σ ), when shown, correspond
to the statistical uncertainty in the PENELOPE data.
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Figure 3. Lateral profiles, relative to the dose maximum, for the 6 and 18 MeV beams at depths
below the water surface indicated in the insets. The values displayed refer to a line along the y-axis
with x = 0. Symbols represent experimental measurements (Dexp) and the full curves correspond to
PENELOPE results (Dpen). The differences of relative doses between PENELOPE and experiments
(Dpen −Dexp, dot-dashed curves) and between PENELOPE and EGS4 (Dpen −Degs, dashed curves)
are also shown. Error bars (at 3σ ), when shown, correspond to the statistical uncertainty in the
PENELOPE data.

For the sake of clarity, only PENELOPE’s error bars, at the 3σ level, are displayed in
most figures. Since the statistical uncertainties associated with the results presented for the
EGS4 calculations are smaller than those of PENELOPE, the latter represent an upper bound
in most cases. This is so because, firstly, BEAM has recourse to VR techniques which were
deliberately avoided in PENELOPE so that the accuracy was not compromised in any way (see
section 4.2); secondly, mixed simulation cut-offs were chosen to be smaller in PENELOPE
for the same reason; and finally, in some cases the EGS4 bin sizes were larger.

As explained in section 4, comparisons between PENELOPE and experiments and between
PENELOPE and EGS4 will be presented separately. In figure 2, central-axis depth doses for
the nominal energies of 6, 12 and 18 MeV are given. Overall, the agreement between the three
sets of data is good, the differences being usually below the 2% level. Some departures from
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Figure 4. Lateral profiles, relative to the dose maximum, for the 12 MeV beam at depths below
the water surface indicated in the inset. The values displayed refer to a line along the y-axis with
x = 0. In graph (a), which shows the relative doses, symbols represent experimental measurements
(Dexp) and the full curves correspond to PENELOPE results (Dpen). The lateral profiles at 3.7,
4.7 and 5.9 cm have been multiplied by factors 0.8, 0.5 and 0.15 respectively to avoid overlap of
the different curves. Again, error bars correspond to the statistical uncertainty in the PENELOPE
data. In graph (b), on the other hand, the differences of relative doses between PENELOPE and
experiments (Dpen − Dexp, full curves) and between PENELOPE and EGS4 (Dpen − Degs, dashed
curves) are presented.

this value are found especially at shallow depths and for the largest energies, an effect that is
probably due to the failure of the detectors to yield accurate readouts when there is a lack of
electronic equilibrium. Lateral profiles for the same beams are presented in figures 3 and 4. The
differences fall below 3% in most cases, being occasionally larger in the shoulders of the curves.

For the sake of completeness, it is also interesting to compare diverse features of the
PSFs generated with PENELOPE and BEAM. To this end, energy and angular distributions
of electrons and photons are displayed in figures 5 to 8. It is interesting to point out that
whereas photon energy distributions show a very good agreement PENELOPE’s electron
energy distributions are significantly wider in the peak region. This difference is mainly caused
by the neglect in the EGS4 code of the straggling due to energy losses below AE, the threshold
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Figure 5. PSF electron energy distributions for the 6 and 18 MeV beams. Full and dashed curves
represent PENELOPE and BEAM results, respectively. All curves have been normalized to unit
area and error bars refer to the PENELOPE curves only.

for production of delta rays. Indeed, the agreement between the two codes can be largely
improved by convolving the BEAM energy distributions with a Gaussian function whose width
is determined by the straggling generated below AE and AP. Regarding angular distributions,
a significant difference is also observed here, the PENELOPE results implying that fewer
electrons are travelling along the forward direction, or in other words, that they experience a
stronger scattering power. This difference stems from the fact that PENELOPE uses scattering
powers obtained from partial wave analysis, while EGS4 is based on the Molière (1948) theory.
As shown by Fernández-Varea et al (1993), the latter approach underestimates the scattering
power for medium and large atomic numbers—such as the ones encountered in the scattering
foils employed for electron beams. The angular distribution of photons, in turn, mimics that
of electrons, since bremsstrahlung production is strongly correlated with the direction of flight
of the emitting particle.

Of course, the importance of these divergences, which are caused by differences in the
physical models implemented in both codes, have to be put in perspective by considering
the relative contribution that a variation in the dynamical variable under analysis may have
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Figure 6. PSF photon energy distributions for the 6 and 18 MeV beams. Full and dashed curves
correspond to PENELOPE and BEAM results, respectively. All curves have been normalized to
unit area.

on the actual quantity of interest, that is, on the dose. The agreement found for the latter
corroborates the reliability of both codes and, at the same time, shows the limitations that the
use of approximate models imposes on the degree of detail with which the transport process
can be described.

An interesting feature of the photon spectra in figure 6 is the presence of several prominent
peaks. The one at the lowest energy (between 50 and 100 keV) corresponds to the x-rays
produced in the parts of the accelerator containing W and Au (vacuum window, scattering foil
for the 18 MeV case, collimator, etc). The peak at the highest energy (around 511 keV) is
caused by annihilation photons produced after the generation of an electron–positron pair by
a bremsstrahlung photon. More interestingly, there is a third skewed peak between the other
two in the 18 MeV case, extending slightly farther to the higher energies than to the lower
ones. It corresponds to annihilation photons initially emitted upstream that interact with some
element of the accelerator head and they are backscattered downstream, thus arriving at the
scoring plane with an energy roughly equal to 511/(2−cos π) = 170 keV. In the 6 MeV beam
there are far fewer annihilation photons and therefore this backscattering peak is not seen.
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Figure 7. Angular distributions of electrons in the PSF for the 6 and 18 MeV beams. Full and
dashed curves are PENELOPE and BEAM data respectively. Distributions have been normalized
to unit area when represented versus cos θ , which gives more weight to larger angles. This explains
the seemingly different areas enclosed by the two displayed curves.

Experimental measurements of dose distributions with half the beam obstructed by a semi-
infinite lead foil placed right under and parallel to the water surface were also carried out with
the Scanditronix silicon detector. The different densities and scattering powers of the metal
and the water give rise to striking dose inhomogeneities which represent a stringent test on
the multiple scattering scheme adopted in the simulation algorithm. In fact, this experimental
set-up is similar, although geometrically simpler, to the benchmark test described by Shortt
et al (1986). As shown in figure 9, a very good agreement is found between the three sets of
results, the difference usually being below the 3% level.

6. Conclusions

The MC code PENELOPE has been used to simulate electron beams from a Siemens Mevatron
KDS linac for three nominal energies. Central-axis depth doses and lateral profiles inside
a water phantom have been obtained and compared with experimental results and with
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Figure 8. Angular distributions of photons in the PSF for the 6 and 18 MeV beams. Full and dashed
curves are PENELOPE and BEAM results, respectively. As in the previous figure, distributions
have been normalized to unit area when they are represented versus cos θ .

calculations performed with the well-known MC code EGS4 (more specifically, with user codes
BEAM and DOSXYZ). Generally speaking, the agreement is good. Very close agreement has
also been found between PENELOPE and EGS4, on the one hand, and between PENELOPE
and measurements, on the other, when the beam was partially obstructed by a lead slab put on the
water surface, a stringent test of the angular scattering mechanisms implemented in these codes.

Phase space distributions at the scoring plane for electrons and photons have been
calculated with both PENELOPE and BEAM. Small but significant differences, probably
caused by the way in which condensed simulation physics are implemented in the two codes,
were found in the energy distribution of electrons and the angular spread of particles. These
differences proved not to be very significant regarding the calculation of dose distributions
inside the water phantom. Ongoing work on the extension of this conclusion to the
inhomogeneous geometry of an actual patient, obtained by means of a CT scan, will be
presented elsewhere.

The motivation for this study was to show that PENELOPE is well suited to describing the
transport of radiation in complex geometries which consist of multiple elements with relatively
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Figure 9. Lateral dose profiles relative to the dose maximum in a water phantom for the 12 MeV
beam at the depths indicated in the insets. The water surface was partially covered with a lead slab—
see text for details. In graph (a), which shows the relative doses, symbols represent experimental
measurements (Dexp) and the full curves correspond to PENELOPE results (Dpen). The lateral
profiles at 3.1 and 4.9 cm have been multiplied by factors 0.6 and 0.4, respectively, to avoid
overlap. In graph (b), on the other hand, the differences of relative doses between PENELOPE
and experiments (Dpen − Dexp, full curves) and between PENELOPE and EGS4 (Dpen − Degs,
dashed curves) are presented. PENELOPE’s statistical uncertainties were about or less than 2% of
the dose maximum in all cases.

simple shapes, usually limited by quadric surfaces, such as those found in medical problems
involving accelerator heads, 60Co units, brachytherapy units etc. With the aid of the debugger
GVIEW, the coding of these geometries according to the PENGEOM2 format is nothing more
than routine editing work. On the other hand, the code philosophy is very similar to that of
EGS4, namely the subroutines of the package are called from a simple steering main program
provided by the user, thus allowing full flexibility in the definition of the quantities of interest
and in the application of variance-reduction techniques. The reliability of the simulation
results and the confidence of the medical community on the MC method should benefit from
the widening of the spectrum of available codes.

We have also introduced a robust and cost-effective method of programming the calculation
of accurate statistical uncertainties for CT geometries. Additionally, it has been shown that
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PSFs can be characterized by their ‘latent’ variance, the minimum attainable variance for a
given quantity of interest. An explicit expression and a practical procedure to estimate its value
are presented.

To reduce the time needed to complete the calculation, PENELOPE has been parallelized
using the freely available MPI library. The speed-up with respect to the scalar code is roughly
linear with the number of processors. The use of the concept of task farms, which can be
based on fast and affordable state-of-the-art personal computers, puts this possibility within
the reach of most medical and academic centres.
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Appendix A. Fast uncertainty calculation

The simultaneous evaluation, by using equations (3) and (4), of the means q and variances s2

associated with a large number of MC mean value estimators can be readily implemented in a
computer program as follows.

For each quantity of interest q, e.g. the energy deposited in a voxel, we define three real
arrays Q(K), Q2(K) and QTEMP(K) and an integer label LASTHI(K), where K is the voxel index.
All these quantities are initially set to zero. The partial score qij due to the j th scoring event
occurred during the simulation of the ith history is accumulated in the partial counter QTEMP,
whereas the global contribution qi and its square are accumulated in Q and Q2, respectively.
Here, we recall that by ‘history’ it is meant a primary particle and all its secondaries. Each
particle is assigned a label, HIST, equal to its history’s order number i. Its value is transferred to
LASTHI the first time that the history contributes to QTEMP. In the course of the simulation, the
value of QTEMP is transferred to the global counters Q and Q2 only when it is necessary to store
a contribution from a new history. Explicitly, the FORTRAN code for scoring a contribution
DELTAQ ≡ qij to the voxel K is

IF(HIST.NE.LASTHI(K)) THEN
Q(K) = Q(K)+QTEMP(K)
Q2(K)= Q2(K)+QTEMP(K)**2
QTEMP(K) = DELTAQ
LASTHI(K)= HIST

ELSE
QTEMP(K) = QTEMP(K)+DELTAQ

ENDIF
At the end of the simulation, the residual contents of QTEMP(K) must also be transferred to the
global counters Q(K) and Q2(K) for all K.
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Note that this algorithm has a very modest computational burden, since it only implies an
additional IF each time a scoring event takes place and the introduction of the integer array
LASTHI(K) for each existing counter Q.

Appendix B. Latent variance

In this appendix we address the problem of computing the statistical uncertainties that originate
from the fact that the PSF has a limited size. For the sake of brevity, the equations that follow
are given without proof. A paper describing these and other aspects of this concept is under
preparation and will be published elsewhere.

The simulation process we deal with can be stated in the following general terms. The
calculation of some quantity of interest q, e.g. the dose deposited in a voxel, is split into two
parts. First, the trajectory of each particle is simulated until it reaches a predefined scoring
plane. This part of the process gives rise to the PSF. Second, the transport of each particle in
the PSF continues until it has been completed and a contribution to q is obtained.

Let us assume that the phase space of particles on the scoring plane is divided into a set
of infinitely small portions, which we shall call cells. Each cell can be thought of as defining
whether the particle is an electron, a photon or a positron, and an interval for its dynamical
variables, i.e. its energy, position and direction of flight. As a result of the completion of
a history (i.e. the simulation of a primary and all its secondaries) up to the scoring plane, a
random variable nb can be assigned to cell b (b = 1, . . .) such that, for analogue simulations,
its value is the number of particles that happen to end up in that cell. In general, when VR
techniques are employed, nb is the sum of statistical weights of the particles occupying the cell,
if any. We introduce a second random variable, qb, defined as the contribution to the quantity
of interest produced by simulating a particle with a set of dynamical variables defined by cell
b and with unit statistical weight.

It can be proved that, owing to the mutual independence of the qbs and the independence
of qb with respect to nb, the variance of the estimator q, given by equation (3), can be written
as

σ 2(q) = 1

N
(A + B) (B.1)

where N is the number of simulated histories and the quantities A and B are given by

A =
∑

b

〈qb〉2〈n2
b〉 +

∑
a 
=b

〈qa〉〈qb〉〈nanb〉 − 〈q〉2 (B.2)

and

B =
∑

b

σ 2(qb)〈n2
b〉 (B.3)

respectively. The factor σ 2(qb) is the variance associated with qb. The key point here is that
the use of VR techniques downstream of the scoring plane can reduce σ 2(qb), and hence B, to
virtually zero. However, neither 〈qb〉 nor nb can be altered during this part of the simulation.
Therefore, according to expressions (B.1) and (B.2), for a given PSF A/N is the minimum
variance with which q can be obtained; hereafter and in the text, this quantity will be referred
to as the latent variance.

The latent variance can be numerically evaluated by means of a simple trick. It is easy
to see that a K-fold splitting of the particles in the PSF, weighting them with a factor K−1 so
as to keep the final scores unbiased, modifies the variances σ 2(qb) and B by the same factor
K−1. Thus, the variance σ 2

K(q) of the simulation result becomes

σ 2
K(q) = 1

N
(A + BK−1). (B.4)
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Figure 10. Variance of the average dose produced by the 12 MeV beam in a water phantom at
depths between 2.7 and 2.8 cm, where the dose maximum lies. MC variances using various splitting
factors K are displayed as dots. The straight line is a fit performed with the last four data points
on the right. The PSF contained 20 000 particles corresponding to N = 224 948 primaries. Error
bars correspond to the uncertainty of the variance.

This expression can be used to determine the latent variance as follows. We use particle splitting
to do the simulation after the scoring plane of the particles in the PSF. Various simulations are
performed with increasingly larger splitting factors K . Then, the variance of q is represented
versus K−1 and fit to a straight line. The crossing of this line with the axis K−1 = 0 defines
the latent variance. Owing to the fact that A is an intrinsic property of the system (and of the
simulation algorithm used), this procedure can be applied to only a fraction of the PSF and the
result scaled according to the actual value of N .

The results of the application of this method to a practical case are displayed in figure 10.
The considered quantity q is the average dose, at depths between 2.7 and 2.8 cm, caused
by the 12 MeV electron beam from our accelerator in a semi-infinite water phantom. The
dose was calculated from a deliberately limited PSF with 20 000 particles, which correspond
to N = 224 948 simulated primary electrons (i.e. histories). The ‘measured’ MC variances
σ 2

K(q) are obtained from simulations using particle splitting with different splitting factors
K . When plotted as a function of 1/K , the MC variances do define a straight line, which
confirms the adequacy of equation (B.4). The straight line shown in the figure was obtained by
least squares fitting of the MC variances for K = 1, 2, 4 and 8. The latent standard deviation
obtained from this fit was

(
A

N

)1/2

= 0.75 ± 0.05 keV cm2 g
−1

per history.

This result can now be scaled to the actual PSF size, say N ′ = 108 histories, yielding

(
A

N ′

)1/2

= 0.036 ± 0.002 keV cm2 g
−1

per history.

which is less than 0.1% of the dose at the considered depth. Other quantities of interest
involving a lower interaction probability per history, such as the dose to a single voxel, are
bound to have larger latent variances.
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